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For spin-lattice systems, the Kubo formula, expressing the relaxation 
function in terms of the linear response function, is found to be exact in 
the thermodynamic limit. In addition, analyticity properties are obtained. 
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1. I N T R O D U C T I O N  

Thermodynamics when derived from statistical mechanics is concerned with 
time-dependent correlation functions. The calculation of these functions is in 
general far too complex. However, one is usually interested in the long-time 
behavior of correlations between extensive variables, and in this regime the 
simplifications are considerable. 

In the study of time-dependent correlations, the relaxation function plays 
a very important role. This function describes the manner in which the 
fluctuations of a system in statistical equilibrium relax. It has been proposed 
by Kubo (1> that the relaxation can be expressed as a time integral of another 
function which is much more readily calculated--the linear response function. 
This gives the response of the system to small perturbations. 

Several objections have been put forward regarding the validity of  
Kubo's relation connecting relaxation and linear response (see, e.g., Ref. 2). 
One of these is the validity of the linear approximation in the perturbation 
expansion, and another, more serious, perhaps, is the conflict arising from the 
fact that the perturbation expansion is only valid for short times, while one 
is interested in the long-time behavior of the relaxation function (see, e.g., 
Ref. 3). 
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In the case of quantum lattice systems with finite-range interactions we 
show that in the thermodynamic limit the nonlinear contributions to the 
relaxation function vanish for small times. Moreover, both relaxation 
function and linear response function are holomorphic for small times, so 
that one may hope to continue the equation to large times. 

The thermodynamic limit is not a restriction. Indeed, for a finite volume 
a fluctuation of the system will never relax and the relaxation function is 
almost periodic. Alternatively, one could place the finite system in idealized 
isothermal surroundings. (5) 

A first attempt at the rigorous study of this problem in the thermo- 
dynamic limit with quasilocal observables was done in Ref. 4. In the present 
work we treat extensive observables. 

2. D E F I N I T I O N S  

Consider the lattice Z ~, v = 1, 2,.... For each finite subset A of Z ~ let 
N(A) denote the number of points in A. For simplicity we shall assume 
invariance under inversion: - A  c A. 

Let ~ '  denote the quasilocal algebra of the spin-lattice system, i.e., the 
closure of the union of all local algebras d A. Let ~ = UAdA be the algebra 
of local elements. For more details see Ref. 6. 

The unperturbed dynamics as usual is given by local Hamiltonians 
HA e dA. These are supposed to be invariant under space translations; one 
has for all x ~ Z ~ 

~-xH~ = HA§ 

(~-x[x ~ Z ~} is the group of space translation automorphisms. 
In terms of the potential 4, one has 

X = A  

where 4,(X)* = 4,(X), 4,(X) e ~x ,  and r~4,(X) = 4,(X + x). We suppose also 
that 4' is of finite range Ao; i.e., one has 4,(X) = 0 if 0 s X and X r Ao. 
The norm of the potential is denoted e and is given by 

c = ~ ll4,(x)tl 
x 

where the summation is on all subsets X of Z ~ containing the origin of the 
lattice. 

Local time evolution is described by the automorphism atn: 

(cA(A) = e*tHAAe--ft'A 
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The uniform limit limA~ ~ ~ta(A) = at(A) exists for all A in d .  (7'8) We shall 
use the following bound, which can be found in Ref. 8: if 

a~ A = [HA,... [Ha, A]...] 
n 

and A ~ ~r 3- c A, then 

Ila,all ~< n! tIAI[{2c exp[N(Ao)]} ~ exp[N(zk)] 

Extensive elements are obtained from local elements by a Fourier transform. 
Let A e ~'z and k ~ N~. Denote 

A(A; k) = N(A) -1t2 ~ e~kXrxA 
x ~ A  

If  A is self-adjoint and A has inversion symmetry, then A(A; k) is self- 
adjoint again. 

Given a self-adjoint local element A, it is used to construct the Hamil- 
tonian of a perturbed dynamics: 

H~ :e = HA + A(A; k) 

The corresponding automorphisms will be denoted yt A and are given by 

ytA(B) = [exp(itHA:k)]B exp(--itH~ ;~) 

De f in i t i on  2.1. Let oJ be a state on d .  Let A and B be self-adjoint 
local elements. The relaxation function is given by 

OA~(A, B; k; t) = o~((aa_tyt A - 1)B(A; - k ) )  

As has been remarked in the introduction, it can only show relaxational 
behavior in the thermodynamic limit. The definition differs by a constant 
from the one found in the literature. (~) This constant is formally given by 

- lim oJ((a a_tytA)B(A; - k)) 

From Dyson's expansion one has 

ytaB(A; - k) 
t s 

--   AB<a; + ,fo Eo,AA(a; -- fo d, f0 a,, 
x y0([A(A; k), [aX,,A(A; k), @_~,B(A; -k ) ] ] )  

Applying the state oJ. aA_t on this relation, 

t t s 

OA~(A, B; k; t) = +  i fo ds ,,.,([oA_sA(A; k), B(A; -k)])  - s ds fo ds' 

x w(aA_ty~[A(A; k), [@_~,A(A; k), @_~,B(A; -k ) ] ] )  
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Defini t ion 2.2. The linear response function now is given by 

CA~ B; k; t) = ~([A(A; k), aA_tB(A; -k) ] )  

The expression for the relaxation function becomes 

P t 

r176 B; k; t) = - i  jo ds 6A~ A; - k ;  s) + ... 

Compare this to the Kubo formula, which in our notations reads 
/ =  co 

B; k; t) = lira i f  dsCA~ A; - k ;  s)e -~  cb A~ A, 
~--~0 + Jt 

For applications of the situation described in this paper, see, e.g., Ref. 9. 

3. B O U N D  O N  T H E  N O N L I N E A R  T E R M  

Lemma 3.1. Let A and B be local elements. There exist to > 0 and 
M > 0 such that for all s and t in [ -  to, to], for all k and k' in R v, and for all 
finite subsets A of Z v one has 

II [A(A; k), [asAA(A; k), arAB(A; k')]] ]l < N(A)- 1/2M 

Proof 
One has 

[A(A; k), [asaA(A; k), arAB(A; k')]] 

= N(A)-3/2 ~ e~(x+~)e~'~[r~A, [a~A%A, a~A%B]] 
X , y , Z ~ A  

= N(A)-3' 2 ~ e'k(~+~)e 'k'~ ~ (is)"(it)m 
x,U,~A . . . .  O "n! m! C~m(X,y,z) (1) 

with 

e,m(X, y, z) = [~'xA, [HA .... [HA, %A] ...], [HA .... [HA, %B] ..-]] 
rtz 

Let A ~ dAA and B e d6  B. Then [HA,... [HA, ~-~A] ,..] belongs to d~A+y+,A o �9 

Similarly, one has [HA .... [HA, ~-~B] ..-] ~d~B+~+m~o. The commutator of 
m 

both expressions therefore is zero if the intersection 

(hA + y + nAo) n (AB + z + mAo) is empty (2) 

In any case this commutator belongs t o  g~(aa+V+ntXo)U(a~+z+mao)" In the ex- 
pression for e,m(X, y, z) it is commuted again with rxA. For a nonvanishing 
result one needs therefore 

(AA + x) n [(AA + y + nAo) u (AB + z + mAo)] # ~ (3) 
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The previous arguments  can be used to obtain  a bound  on the number  
o f  points  y and z for  which e,~n(X, y, z) does not  vanish. The  point  x is kept  
fixed. 

F r o m  (3) one sees tha t  either y ~ 2A A -~ rtA 0 q- x or  z ff A a q- A e + max 
+ x. Take  e.g., y e 2 A  A -}- flAX o -k- X. F r o m  (2) there follows z E AXA + AXB + 

y + (n + m)Ax0 and hence z e 3axA + axB + x + (2n + m)axo. In the other  case 
(z E axA + axB + mAo + x) there follows y E AXa + AXB + z + (n + m)Axo and 
hence y e 2AXA + 2axB + (n + 2m)axo + x. Let  U = 3axA + 2axB + 2axo. Then 
in any  case y and z belong to (n + m)I" + x. Therefore  each of  the y and z 
summat ions  contain at most  (n  + m)VN(P) terms. 

Let  us now look for  a bound  in n o r m  on C,m(X, y, z). One has 

HC,m(X, y, z)]I ~< 4[]AII ]][HA,... [HA, %A] .--] U I][HA .... [HA, r~B] ""]1] 
n m 

With the bound  ment ioned in the previous section this becomes 

~<4][A]]2HB]] n! m! [2c exp N(axo)] "+m exp[N(axA) + N(ax,)] 

The two results obta ined so far  together  yield 

x , ,~  A~''- e~k(x+~)ei~'~c,m(x, y, z) 

~< 4[[A[[ZI[BII n! m! [2c exp N(ax)] "+m exp[N(AA) + N(axB)] 

x N(A)(n + m)2VN(F) 2 

The  bound  for  (1) becomes  

N(A)-~'24[[A]]2][B[[ exp[N(AA) + N(AB)] N(F)  2 

x ~ [s]~[t[m[2cexpN(Axo)]~+m(n + m) 2~ 
~ , m = 0  

The series is uniformly bounded  for  s and t in [ -  to, to] if  to satisfies 

0 < to < (2e) -z exp[-N(Axo)] 

Hence  the 1emma follows. �9 

T h e o r e m  3.2.  Let A and B be self-adjoint local elements of  the algebra 
of  the quan tum spin lattice. Let  the t ime evolut ion be determined by a finite- 
range interaction as explained above.  Then there exist to > 0 and M > 0 
such tha t  

q~A~ B; k; t) + i ds ~A~ A; - k ;  < N(A)-~ /2M 

for  all t in [ - t o ,  to], for  all k e R ~, for  all states ~ on sJ, and  for  all finite 
subsets A of  Z ~ that  are inversion invariant.  
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Hence 

I fo I lira (P2(A, B; k; t) - o~(B(A; -k ) )  + i ds r  A; - k ;  s) = 0 
A - + c O  

Proof. From the previous section one has 

qbA~(A, B; k; t) 
/ ,  t 

- i  J, ds r  A; - k ;  s) 

f - Jo ds ds' co(aA_ty)([A(A; k), [@_s,a(A; k), @_,,B(A; -k)]])) 

The nonlinear term is majorized by 

{t 2l[ [A(A; k), [a A_.,A(A; k), a A_ ~,B(A; - k)l ] II 

From the lemma one gets to' > 0 and M '  > 0 such that if is - s '  I < to' and 
It - s' I < to' the bound becomes �89 '. Let to = �89 and M = 
�89 '. The theorem follows. �9 

4. T H E R M O D Y N A M I C  L I M I T  

In this section it is shown that the linear response function exists in the 
thermodynamic limit and some properties are derived. For local elements 
A and B this is straightforward. Indeed, the linear response function 
oJ([B, ~a_tA]) converges to o~([B, a_tA]). For extensive observables A(A; k) 
and B(A; - k )  one has to study the limit 

lim oJ([A(A; k), ~A_tB(A; -k ) ] )  
A-4CO 

In the following A and B are assumed to be self-adjoint local elements, 
and we denote 

C~ m.(k, t) = ~ ( - i t S ,  N' e~kX[rxA, [HA,...[Hh, BI ""]] 
" . = r e \ n !  ] 

n 

Lemma 4.1. Let ko > 0. There exists to > 0 such that for It] ~< to and 
Jim k. 1 < ko the limit 

lim ~ d~x[TxA, ~A_tB ] 
A'-+  co X ~ A  

converges in norm to an element of ~r which will be denoted se(A, B; k; t). 
The convergence is uniform in k and t. The norm H ~:(A, B; k; t)ll is uniformly 
bounded in k and t. 
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ProoL Because [HA,... [HA, B] ...] belongs to ~aB +,a the commutator of 

this expression with ~xA vanishes if (A A + x) n (A~ + nAo) = ;~. Hence only 
terms with x ~ AA + AB + nAo can contribute to the sum. The number of x's 
is majorized by nVN(-AA + AB + Ao). 

Denote f~ = max{le~kX], with IImk~ I ~< ko and x ~  --AA + AB + nAo}. 
Then one hasfn ~< fog", with g = max{lr with lira k d ~< ko and x E Ao}. 
We also have the bound 

11 [rx, A, [HA .... [HA, B] ...]] [I ~< 2/Ia 11 [IB [/n! [2e exp U(A)] n exp N(AB) '--w---' 

There follows 

m '  

HC~,m,(k, t)]] < ~ ]tl~J'og"n~N(--AA + Az + AO) 

x 21JAIl [IBII[2c exp N(A)]" exp N(AB) 

Let to be such that 0 < to < [2gc exp N(A0)]-z. Then the series 

It [~g~n'[2c exp N(A0)]~ 
n = 0  

is holomorphic on the disk I tl < to. We then conclude that the series 
CAo, oo(k, t) converges in norm to ~ A  e~kX['c~A, aA-tB] uniformly in t, k, and 
A and that the latter expression is uniformly bounded in t, k, and A. 

Remark that if A is large enough so as to include +2x,~ + AB + m'Ao, 
then CAo.m,(k, t) no longer depends on A and will be denoted by Co,m,(k, t). 
From the convergence of C~,oo(k, t) uniformly in A then follows the con- 
vergence of lim~,~ ~o Coy(k,  t) to some element of ~ ,  which will be denoted 
~:(A, B; k; t). The latter convergence is also uniform in k and t and 
II~:(A, B; k; t)l I is uniformly bounded in k and t. 

Let e > 0. There exists an index m such that 

H~(A, B; k; t) - Co,re(k, t)l[ < " 

and 

IIC~,m(k, t) - Co,~(k, t)[] < , 

for all k, t, and A. But for A large enough one has CAo,m(k, t) = Co,re(k, t). 
Hence 

II~(A, B., k; t)  - C~,o~(k, t)H < , 

This shows the convergence of limA~ oo C~o(k, t) to ~(A, B; k; t) uniformly 
in k and t. [ ]  

C o r o l l a r y  4.2. For  any state ~o on d the function ~o(~:(A, B; k; t)) is 
holomorphic in k and t on the domains specified in the lemma. This follows 
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because ~o(~:(A, B; k; t)) is a uniformly bounded limit of  holomorphic 
functions. 

L e m m a  4.3. Let to > 0. The limit 

~(A) ~ [CAm'm'(k' t) - CAm,~(k, t)] 
y G A  

converges to zero uniformly in k G R v and t e [ -  to, to]. 

Proof. One has 

CAm.m,(k, t) - CAmy~(k, t) 

= e~kX[~'xA, [HA .... [HA, B ~  
7b 

- ~ .  e'~x[~xA, [HA-v .... [HA-v,  ~'"]]~t 
x G A - - v  ~ J  

= ~ ~ 

- [Ha-v, . . .  [HA-v, B] ...]}] + ~ e"X['r~A, [HA .... [HA, B] ...]] 

- ~ ,  e '~[ .xA,  [gA-v  .... [HA-v, ~'"]]~t 
x~(A-- V)\A -T-j 

But one has 

[,xA, {[HA .... [HA, B] ..-] -- [HA-v,... [HA-v, B] ...]}] 

= ( ~ - ~ )[,~A, [r [r B] .--]] 
Z z , , . . , Z n = Z k  Z j . , . . , , Z  n A - y ~  

Terms for which Z:  through Z ,  lie in A n (A - y) two by two cancel. Suppose 
now that A is large enough so that A, + nA o : A. Then Z, ~ A follows. 
Hence in the foregoing expression only the first summation remains, with the 
restriction that at least one of the Z, has nonzero intersection with the comple- 
ment CA-v of A - y. We conclude that foregoing expression vanishes if y 
does not belong to the set CA + nho. 

Next consider the sum 

e~[rxA, [HA .... [HA, B] ...]] 
x ~ A \ ( A -  y)  

The commutators vanish if not x e AA + AB + nAo. From x ~ A - y it then 
follows that y e CA + Aa + As + nAo. The sum 

E e'~X[rxA, [HA-u,... [HA-u, B] ...]] 
x ~ ( A  - y ) \ A  

vanishes if A is taken large enough so as to contain the set AA + AB + nAo. 
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We conclude that Ca~,m,(k, t) - C~7d(k, t) is zero if y does not belong 
to CA + AA + AB + m'&0. 

On the other hand, a uniform bound M for [lC~,r~,(k, t) - C{7~(k, t)H 
can be obtained by the methods of the previous lemma. There follows 

1 ~(A) ~ [CAm m,(k, t) - C~J(k ,  t)] < M N(A n (CA + AA -~ AB + m'Ao)) 
yea ' N(A) 

The set A n (CA + AA + AB + m'A0) is a boundary set of A. In the limit 
A --> oo the right-hand side of the previous inequality vanishes. [ ]  

T h e o r e m  4.4. Let A and B be self-adjoint local elements of ~ .  Let 
ko > 0. Let ~o be a space translation invariant state on d .  There exists to > 0 
such that for t ~ [ -  to, to] : 

1. The thermodynamic limit of the linear response function CA~(A, B; k; t) 
converges uniformly in k and t. 

2. There exist elements ~:(A, B, k; t) of 9~ independent of o~ for which 

lim CA~(A, B; k; t) = oJ(~(A, B; k; t)) 
A ~ o  

3. ~o(~(A, B; k; t) extends to a holomorphic function on It] ~< to and 
IImk,] ~< ko. 

Proof. One has 

CA~ B; k; t) = o~([A(A; k), aA_tB(A; - k ) ] )  

- NI*)x~A(~ ,7"g e'~(x-Y)~176 e&t%B]) 

which is of the form 

with �9 

1 
- -  ( Z _ t  N(A) ~ ~ e~~ A-YB]) 

yEA x e A - - y  

1 
N(A) ~ /z(A - y) 

y e a  

/~(A) = ~ e~Xo~([rxA, ea_tB]) 
XEA 

One now has 

t,(A) - /~(A - y) = lim [C~,m(k, t) - Ca-~iko,m ~ , t)] 
m - - + ~  

uniformly in k, t, A, and y (see proof of Lemma 4.1) and from the previous 
lemma one knows that 

lim 1 t )  - C 7(k, t)l 
y e a  
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converges in norm to zero uniformly in k and t. Therefore the limits A --~ oo 
and m --~ oo may be interchanged. It follows that 

,im 7 - ,)1 
A ~ o 0  Ivklx) 

converges to zero in norm uniformly in k and t. Or 

lim. ~(A) N(-A) /,(A - y) = 0 

But it follows from the first lemma of this section that limA~ ~/z(A) converges 
to ~o(~:(A, B; k; t)) uniformly in k and t. This proves point 1 of the theorem. 
Points 2 and 3 now follow from Lemma 4.1 and corollary 4.2. �9 

The results of Theorems 3.2 and 4.4 may now be combined and yield: 

T h e o r e m  4.5. Under the conditions of Theorem 4.4 and with the above 
notations the following holds: The thermodynamic limit of the relaxation 
function (PA~(A, B; k; t) converges uniformly in k and t, and is given by 

P t 

lim a)A'~ B; k; t) = - i [ d s  lim r A; - k ;  t) 
A--+ oo dO A--* oo 

A C K N O W L E D G M E N T S  

We are grateful to R. Dekeyser and M. Fannes for discussions on this 
problem. 
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